1,894 research outputs found

    Magnetic and the magnetocaloric properties of Ce1-xRxFe2 and Ce(Fe1-xMx)2 compounds

    Full text link
    We have studied selected rare earth doped and transition metal doped CeFe2 compounds by examining their structural, magnetic and magneto-thermal properties. With substitution of Ce by 5 and 10% Gd and 10% Ho, the Curie temperature can be tuned to the range of 267-318 K. Localization of Ce 4f electronic state with rare earth substitutions is attributed for the enhancement of Curie temperature. On the other hand, with Ga and Al substitution at the Fe site, system undergoes paramagnetic to ferromagnetic transition and then to an antiferromagnetic phase on cooling. The magnetocaloric effect across the transitions has been studied from both magnetization isotherms and heat capacity data. It is shown that by choosing the appropriate dopant and its concentration, the magnetocaloric effect around room temperature can be tuned.Comment: 13 pages, 6 figures, 2 table

    Magnetism in Gallium doped CeFe_2: The martensitic scenario

    Full text link
    Ce(Fe_{1-x}Ga_x)_2 compounds with x = 0, 0.01, 0.025 and 0.05 have been investigated to unravel the effect of Ga on the magnetic state of CeFe_2. For the first time, we find that the dynamic antiferromagnetic phase present in CeFe_2 gets stabilized with Ga substitution. The hysteresis loops show that while the compounds with x = 0 and 0.01 show normal behavior, the other two show multiple magnetization steps across the antiferromagnetic-ferromagnetic transition region. The virgin curve is found to lie outside the envelope curve in these two compounds, similar to the observations made in Ru and Re substituted CeFe_2 compounds. Temperature, sweep rate and time dependences of the magnetization show that the compounds with x >=0.025 possess glassy behavior at low temperatures. Various results obtained reveal that these two compounds belong to the martensite family.Comment: 23 pages, 12 Figure

    The C-terminal portion of the cleaved HT motif is necessary and sufficient to mediate export of proteins from the malaria parasite into its host cell

    Get PDF
    The malaria parasite exports proteins across its plasma membrane and a surrounding parasitophorous vacuole membrane, into its host erythrocyte. Most exported proteins contain a Host Targeting motif (HT motif) that targets them for export. In the parasite secretory pathway, the HT motif is cleaved by the protease plasmepsin V, but the role of the newly generated N-terminal sequence in protein export is unclear. Using a model protein that is cleaved by an exogenous viral protease, we show that the new N-terminal sequence, normally generated by plasmepsin V cleavage, is sufficient to target a protein for export, and that cleavage by plasmepsin V is not coupled directly to the transfer of a protein to the next component in the export pathway. Mutation of the fourth and fifth positions of the HT motif, as well as amino acids further downstream, block or affect the efficiency of protein export indicating that this region is necessary for efficient export. We also show that the fifth position of the HT motif is important for plasmepsin V cleavage. Our results indicate that plasmepsin V cleavage is required to generate a new N-terminal sequence that is necessary and sufficient to mediate protein export by the malaria parasite
    corecore